
Basic Functions

The basic library provides some core functions to Lua. If you do not include this library in your application,
you should check carefully whether you need to provide implementations for some of its facilities.

ipairs (t)

Returns three values: an iterator function, the table t, and 0, so that the construction
 for i,v in ipairs(t) do body end

will iterate over the pairs (1,t[1]), (2,t[2]), ···, up to the first integer key absent from the table.

next (table [, index])

Allows a program to traverse all fields of a table. Its first argument is a table and its second argument is an
index in this table. next returns the next index of the table and its associated value. When called with nil as
its second argument, next returns an initial index and its associated value. When called with the last index,
or with nil in an empty table, next returns nil. If the second argument is absent, then it is interpreted as
nil. In particular, you can use next(t) to check whether a table is empty.

The order in which the indices are enumerated is not specified, even for numeric indices. (To traverse a table
in numeric order, use a numerical for or the ipairs function.)
The behavior of next is undefined if, during the traversal, you assign any value to a non-existent field in the
table. You may however modify existing fields. In particular, you may clear existing fields.

pairs (t)

Returns three values: the next function, the table t, and nil, so that the construction
 for k,v in pairs(t) do body end

will iterate over all key–value pairs of table t.

tonumber (e [, base])

Tries to convert its argument to a number. If the argument is already a number or a string convertible to a
number, then tonumber returns this number; otherwise, it returns nil.

An optional argument specifies the base to interpret the numeral. The base may be any integer between 2
and 36, inclusive. In bases above 10, the letter 'A' (in either upper or lower case) represents 10, 'B'
represents 11, and so forth, with 'Z' representing 35. In base 10 (the default), the number can have a
decimal part, as well as an optional exponent part. In other bases, only unsigned integers are accepted.

tostring (e)

Receives an argument of any type and converts it to a string in a reasonable format. For complete control of
how numbers are converted, use string.format.
If the metatable of e has a "__tostring" field, then tostring calls the corresponding value with e as
argument, and uses the result of the call as its result.

type (v)

Returns the type of its only argument, coded as a string. The possible results of this function are "nil" (a
string, not the value nil), "number", "string", "boolean", "table", "function", "thread", and
"userdata".

String Manipulation

This library provides generic functions for string manipulation, such as finding and extracting substrings, and
pattern matching. When indexing a string in Lua, the first character is at position 1 (not at 0, as in C).
Indices are allowed to be negative and are interpreted as indexing backwards, from the end of the string.
Thus, the last character is at position -1, and so on.
The string library provides all its functions inside the table string. It also sets a metatable for strings where
the __index field points to the string table. Therefore, you can use the string functions in object-oriented
style. For instance, string.byte(s, i) can be written as s:byte(i).

The string library assumes one-byte character encodings.

string.byte (s [, i [, j]])

Returns the internal numerical codes of the characters s[i], s[i+1], ···, s[j]. The default value for i is 1;
the default value for j is i.

Note that numerical codes are not necessarily portable across platforms.

string.char (···)

Receives zero or more integers. Returns a string with length equal to the number of arguments, in which
each character has the internal numerical code equal to its corresponding argument.
Note that numerical codes are not necessarily portable across platforms.

string.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find returns the indices of s
where this occurrence starts and ends; otherwise, it returns nil. A third, optional numerical argument init
specifies where to start the search; its default value is 1 and can be negative. A value of true as a fourth,
optional argument plain turns off the pattern matching facilities, so the function does a plain "find
substring" operation, with no characters in pattern being considered "magic". Note that if plain is given,
then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also returned, after the two
indices.

string.format (formatstring, ···)

Returns a formatted version of its variable number of arguments following the description given in its first
argument (which must be a string). The format string follows the same rules as the printf family of
standard C functions. The only differences are that the options/modifiers *, l, L, n, p, and h are not
supported and that there is an extra option, q. The q option formats a string in a form suitable to be safely
read back by the Lua interpreter: the string is written between double quotes, and all double quotes,
newlines, embedded zeros, and backslashes in the string are correctly escaped when written. For instance,
the call
 string.format('%q', 'a string with "quotes" and \n new line')

will produce the string:

 "a string with \"quotes\" and \
 new line"

The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument, whereas q and s expect a
string. This function does not accept string values containing embedded zeros, except as arguments to the q
option.

string.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures from pattern over string
s. If pattern specifies no captures, then the whole match is produced in each call.

As an example, the following loop

 s = "hello world from Lua"
 for w in string.gmatch(s, "%a+") do
 print(w)
 end

will iterate over all the words from string s, printing one per line. The next example collects all pairs
key=value from the given string into a table:

 t = {}
 s = "from=world, to=Lua"
 for k, v in string.gmatch(s, "(%w+)=(%w+)") do
 t[k] = v
 end

For this function, a '^' at the start of a pattern does not work as an anchor, as this would prevent the
iteration.

string.gsub (s, pattern, repl [, n])

Returns a copy of s in which all (or the first n, if given) occurrences of the pattern have been replaced by a
replacement string specified by repl, which can be a string, a table, or a function. gsub also returns, as its
second value, the total number of matches that occurred.
If repl is a string, then its value is used for replacement. The character % works as an escape character:
any sequence in repl of the form %n, with n between 1 and 9, stands for the value of the n-th captured
substring (see below). The sequence %0 stands for the whole match. The sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as the key; if the pattern
specifies no captures, then the whole match is used as the key.
If repl is a function, then this function is called every time a match occurs, with all captured substrings
passed as arguments, in order; if the pattern specifies no captures, then the whole match is passed as a
sole argument.
If the value returned by the table query or by the function call is a string or a number, then it is used as the
replacement string; otherwise, if it is false or nil, then there is no replacement (that is, the original match is
kept in the string).
Here are some examples:

 x = string.gsub("hello world", "(%w+)", "%1 %1")
 --> x="hello hello world world"

 x = string.gsub("hello world", "%w+", "%0 %0", 1)
 --> x="hello hello world"

 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
 --> x="world hello Lua from"

 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
 --> x="home = /home/roberto, user = roberto"

 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
 return loadstring(s)()
 end)
 --> x="4+5 = 9"

 local t = {name="lua", version="5.1"}
 x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)
 --> x="lua-5.1.tar.gz"

string.len (s)

Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are counted, so
"a\000bc\000" has length 5.

string.lower (s)

Receives a string and returns a copy of this string with all uppercase letters changed to lowercase. All other
characters are left unchanged. The definition of what an uppercase letter is depends on the current locale.

string.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds one, then match returns the captures from
the pattern; otherwise it returns nil. If pattern specifies no captures, then the whole match is returned. A
third, optional numerical argument init specifies where to start the search; its default value is 1 and can be
negative.

string.rep (s, n)

Returns a string that is the concatenation of n copies of the string s.

string.reverse (s)

Returns a string that is the string s reversed.

string.sub (s, i [, j])

Returns the substring of s that starts at i and continues until j; i and j can be negative. If j is absent,
then it is assumed to be equal to -1 (which is the same as the string length). In particular, the call
string.sub(s,1,j) returns a prefix of s with length j, and string.sub(s, -i) returns a suffix of s with
length i.

string.upper (s)

Receives a string and returns a copy of this string with all lowercase letters changed to uppercase. All other
characters are left unchanged. The definition of what a lowercase letter is depends on the current locale.

Patterns

Character Class:

A character class is used to represent a set of characters. The following combinations are allowed in
describing a character class:

• x: (where x is not one of the magic characters ^$()%.[]*+-?) represents the character x itself.
• .: (a dot) represents all characters.

• %a: represents all letters.
• %c: represents all control characters.

• %d: represents all digits.
• %l: represents all lowercase letters.

• %p: represents all punctuation characters.
• %s: represents all space characters.

• %u: represents all uppercase letters.
• %w: represents all alphanumeric characters.

• %x: represents all hexadecimal digits.
• %z: represents the character with representation 0.

• %x: (where x is any non-alphanumeric character) represents the character x. This is the standard
way to escape the magic characters. Any punctuation character (even the non magic) can be
preceded by a '%' when used to represent itself in a pattern.

• [set]: represents the class which is the union of all characters in set. A range of characters can be
specified by separating the end characters of the range with a '-'. All classes %x described above can
also be used as components in set. All other characters in set represent themselves. For example,
[%w_] (or [_%w]) represents all alphanumeric characters plus the underscore, [0-7] represents the
octal digits, and [0-7%l%-] represents the octal digits plus the lowercase letters plus the '-'
character.

• The interaction between ranges and classes is not defined. Therefore, patterns like [%a-z]
or [a-%%] have no meaning.

• [^set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter represents the
complement of the class. For instance, %S represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current locale. In particular, the
class [a-z] may not be equivalent to %l.

Pattern Item:

A pattern item can be

• a single character class, which matches any single character in the class;
• a single character class followed by '*', which matches 0 or more repetitions of characters in the

class. These repetition items will always match the longest possible sequence;
• a single character class followed by '+', which matches 1 or more repetitions of characters in the

class. These repetition items will always match the longest possible sequence;
• a single character class followed by '-', which also matches 0 or more repetitions of characters in the

class. Unlike '*', these repetition items will always match the shortest possible sequence;
• a single character class followed by '?', which matches 0 or 1 occurrence of a character in the class;

• %n, for n between 1 and 9; such item matches a substring equal to the n-th captured string (see
below);

• %bxy, where x and y are two distinct characters; such item matches strings that start with x, end
with y, and where the x and y are balanced. This means that, if one reads the string from left to
right, counting +1 for an x and -1 for a y, the ending y is the first y where the count reaches 0. For
instance, the item %b() matches expressions with balanced parentheses.

Pattern:

A pattern is a sequence of pattern items. A '^' at the beginning of a pattern anchors the match at the
beginning of the subject string. A '$' at the end of a pattern anchors the match at the end of the subject
string. At other positions, '^' and '$' have no special meaning and represent themselves.

Captures:

A pattern can contain sub-patterns enclosed in parentheses; they describe captures. When a match
succeeds, the substrings of the subject string that match captures are stored (captured) for future use.
Captures are numbered according to their left parentheses. For instance, in the pattern "(a*(.)%w(%s*))",
the part of the string matching "a*(.)%w(%s*)" is stored as the first capture (and therefore has number 1);
the character matching "." is captured with number 2, and the part matching "%s*" has number 3.

As a special case, the empty capture () captures the current string position (a number). For instance, if we
apply the pattern "()aa()" on the string "flaaap", there will be two captures: 3 and 5.

A pattern cannot contain embedded zeros. Use %z instead.

5 - Table Manipulation

This library provides generic functions for table manipulation. It provides all its functions inside the table
table.

Most functions in the table library assume that the table represents an array or a list. For these functions,
when we talk about the "length" of a table we mean the result of the length operator.

table.concat (table [, sep [, i [, j]]])

Given an array where all elements are strings or numbers, returns table[i]..sep..table[i+1] ···
sep..table[j]. The default value for sep is the empty string, the default for i is 1, and the default for j is
the length of the table. If i is greater than j, returns the empty string.

table.insert (table, [pos,] value)

Inserts element value at position pos in table, shifting up other elements to open space, if necessary. The
default value for pos is n+1, where n is the length of the table (see §2.5.5), so that a call
table.insert(t,x) inserts x at the end of table t.

table.maxn (table)

Returns the largest positive numerical index of the given table, or zero if the table has no positive numerical
indices. (To do its job this function does a linear traversal of the whole table.)

table.remove (table [, pos])

Removes from table the element at position pos, shifting down other elements to close the space, if
necessary. Returns the value of the removed element. The default value for pos is n, where n is the length
of the table, so that a call table.remove(t) removes the last element of table t.

table.sort (table [, comp])

Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the length of the
table. If comp is given, then it must be a function that receives two table elements, and returns true when
the first is less than the second (so that not comp(a[i+1],a[i]) will be true after the sort). If comp is not
given, then the standard Lua operator < is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given order may have their
relative positions changed by the sort.

6 - Mathematical Functions

This library is an interface to the standard C math library. It provides all its functions inside the table math.

math.abs (x)

Returns the absolute value of x.

math.acos (x)

Returns the arc cosine of x (in radians).

math.asin (x)

Returns the arc sine of x (in radians).

math.atan (x)

Returns the arc tangent of x (in radians).

math.atan2 (y, x)

Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the quadrant of
the result. (It also handles correctly the case of x being zero.)

math.ceil (x)

Returns the smallest integer larger than or equal to x.

math.cos (x)

Returns the cosine of x (assumed to be in radians).

math.cosh (x)

Returns the hyperbolic cosine of x.

math.deg (x)

Returns the angle x (given in radians) in degrees.

math.exp (x)

Returns the value ex.

math.floor (x)

Returns the largest integer smaller than or equal to x.

math.fmod (x, y)

Returns the remainder of the division of x by y that rounds the quotient towards zero.

math.frexp (x)

Returns m and e such that x = m2e, e is an integer and the absolute value of m is in the range [0.5, 1) (or
zero when x is zero).

math.huge

The value HUGE_VAL, a value larger than or equal to any other numerical value.

math.ldexp (m, e)

Returns m2e (e should be an integer).

math.log (x)

Returns the natural logarithm of x.

math.log10 (x)

Returns the base-10 logarithm of x.

math.max (x, ···)

Returns the maximum value among its arguments.

math.min (x, ···)

Returns the minimum value among its arguments.

math.modf (x)

Returns two numbers, the integral part of x and the fractional part of x.

math.pi

The value of pi.

math.pow (x, y)

Returns xy. (You can also use the expression x^y to compute this value.)

math.rad (x)

Returns the angle x (given in degrees) in radians.

math.random ([m [, n]])

This function is an interface to the simple pseudo-random generator function rand provided by ANSI C. (No
guarantees can be given for its statistical properties.)
When called without arguments, returns a uniform pseudo-random real number in the range [0,1). When
called with an integer number m, math.random returns a uniform pseudo-random integer in the range [1,
m]. When called with two integer numbers m and n, math.random returns a uniform pseudo-random integer
in the range [m, n].

math.randomseed (x)

Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal sequences of numbers.

math.sin (x)

Returns the sine of x (assumed to be in radians).

math.sinh (x)

Returns the hyperbolic sine of x.

math.sqrt (x)

Returns the square root of x. (You can also use the expression x^0.5 to compute this value.)

math.tan (x)

Returns the tangent of x (assumed to be in radians).

math.tanh (x)

Returns the hyperbolic tangent of x.

7 - Input and Output Facilities

The I/O library provides two different styles for file manipulation. The first one uses implicit file descriptors;
that is, there are operations to set a default input file and a default output file, and all input/output
operations are over these default files. The second style uses explicit file descriptors.
When using implicit file descriptors, all operations are supplied by table io. When using explicit file
descriptors, the operation io.open returns a file descriptor and then all operations are supplied as methods of
the file descriptor.
The table io also provides three predefined file descriptors with their usual meanings from C: io.stdin,
io.stdout, and io.stderr. The I/O library never closes these files.

Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a second result and
a system-dependent error code as a third result) and some value different from nil on success.

io.close ([file])

Equivalent to file:close(). Without a file, closes the default output file.

io.flush ()

Equivalent to file:flush over the default output file.

io.input ([file])

When called with a file name, it opens the named file (in text mode), and sets its handle as the default input
file. When called with a file handle, it simply sets this file handle as the default input file. When called
without parameters, it returns the current default input file.
In case of errors this function raises the error, instead of returning an error code.

io.lines ([filename])

Opens the given file name in read mode and returns an iterator function that, each time it is called, returns
a new line from the file. Therefore, the construction
 for line in io.lines(filename) do body end

will iterate over all lines of the file. When the iterator function detects the end of file, it returns nil (to finish
the loop) and automatically closes the file.
The call io.lines() (with no file name) is equivalent to io.input():lines(); that is, it iterates over the
lines of the default input file. In this case it does not close the file when the loop ends.

io.open (filename [, mode])

This function opens a file, in the mode specified in the string mode. It returns a new file handle, or, in case of
errors, nil plus an error message.
The mode string can be any of the following:

• "r": read mode (the default);
• "w": write mode;
• "a": append mode;
• "r+": update mode, all previous data is preserved;
• "w+": update mode, all previous data is erased;
• "a+": append update mode, previous data is preserved, writing is only allowed at the end of file.

The mode string can also have a 'b' at the end, which is needed in some systems to open the file in binary
mode. This string is exactly what is used in the standard C function fopen.

io.output ([file])

Similar to io.input, but operates over the default output file.

io.popen (prog [, mode])

Starts program prog in a separated process and returns a file handle that you can use to read data from this
program (if mode is "r", the default) or to write data to this program (if mode is "w").

This function is system dependent and is not available on all platforms.

io.read (···)

Equivalent to io.input():read.

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is automatically removed
when the program ends.

io.type (obj)

Checks whether obj is a valid file handle. Returns the string "file" if obj is an open file handle, "closed
file" if obj is a closed file handle, or nil if obj is not a file handle.

io.write (···)

Equivalent to io.output():write.

file:close ()

Closes file. Note that files are automatically closed when their handles are garbage collected, but that
takes an unpredictable amount of time to happen.

file:flush ()

Saves any written data to file.

file:lines ()

Returns an iterator function that, each time it is called, returns a new line from the file. Therefore, the
construction
 for line in file:lines() do body end

will iterate over all lines of the file. (Unlike io.lines, this function does not close the file when the loop ends.)

file:read (···)

Reads the file file, according to the given formats, which specify what to read. For each format, the
function returns a string (or a number) with the characters read, or nil if it cannot read data with the
specified format. When called without formats, it uses a default format that reads the entire next line (see
below).
The available formats are

• "*n": reads a number; this is the only format that returns a number instead of a string.
• "*a": reads the whole file, starting at the current position. On end of file, it returns the empty

string.
• "*l": reads the next line (skipping the end of line), returning nil on end of file. This is the default

format.
• number: reads a string with up to this number of characters, returning nil on end of file. If number

is zero, it reads nothing and returns an empty string, or nil on end of file.

file:seek ([whence] [, offset])

Sets and gets the file position, measured from the beginning of the file, to the position given by offset plus
a base specified by the string whence, as follows:

• "set": base is position 0 (beginning of the file);
• "cur": base is current position;
• "end": base is end of file;

In case of success, function seek returns the final file position, measured in bytes from the beginning of the
file. If this function fails, it returns nil, plus a string describing the error.
The default value for whence is "cur", and for offset is 0. Therefore, the call file:seek() returns the
current file position, without changing it; the call file:seek("set") sets the position to the beginning of
the file (and returns 0); and the call file:seek("end") sets the position to the end of the file, and returns
its size.

file:setvbuf (mode [, size])

Sets the buffering mode for an output file. There are three available modes:

• "no": no buffering; the result of any output operation appears immediately.
• "full": full buffering; output operation is performed only when the buffer is full (or when you

explicitly flush the file (see io.flush)).
• "line": line buffering; output is buffered until a newline is output or there is any input from some

special files (such as a terminal device).
For the last two cases, size specifies the size of the buffer, in bytes. The default is an appropriate size.

file:write (···)

Writes the value of each of its arguments to the file. The arguments must be strings or numbers. To write
other values, use tostring or string.format before write.

Operating System Facilities

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the given string format.

If the time argument is present, this is the time to be formatted (see the os.time function for a description
of this value). Otherwise, date formats the current time.

If format starts with '!', then the date is formatted in Coordinated Universal Time. After this optional
character, if format is the string "*t", then date returns a table with the following fields: year (four digits),
month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday (weekday, Sunday is 1), yday (day
of the year), and isdst (daylight saving flag, a boolean).

If format is not "*t", then date returns the date as a string, formatted according to the same rules as the C
function strftime.

When called without arguments, date returns a reasonable date and time representation that depends on
the host system and on the current locale (that is, os.date() is equivalent to os.date("%c")).

os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and some other systems, this
value is exactly t2-t1.

os.execute ([command])

This function is equivalent to the C function system. It passes command to be executed by an operating
system shell. It returns a status code, which is system-dependent. If command is absent, then it returns
nonzero if a shell is available and zero otherwise.

os.exit ([code])

Calls the C function exit, with an optional code, to terminate the host program. The default value for code
is the success code.

os.getenv (varname)

Returns the value of the process environment variable varname, or nil if the variable is not defined.

os.remove (filename)

Deletes the file or directory with the given name. Directories must be empty to be removed. If this function
fails, it returns nil, plus a string describing the error.

os.rename (oldname, newname)

Renames file or directory named oldname to newname. If this function fails, it returns nil, plus a string
describing the error.

os.time ([table])

Returns the current time when called without arguments, or a time representing the date and time specified
by the given table. This table must have fields year, month, and day, and may have fields hour, min, sec,
and isdst (for a description of these fields, see the os.date function).

The returned value is a number, whose meaning depends on your system. In POSIX, Windows, and some
other systems, this number counts the number of seconds since some given start time (the "epoch"). In
other systems, the meaning is not specified, and the number returned by time can be used only as an
argument to date and difftime.

os.tmpname ()

Returns a string with a file name that can be used for a temporary file. The file must be explicitly opened
before its use and explicitly removed when no longer needed.
On some systems (POSIX), this function also creates a file with that name, to avoid security risks. (Someone
else might create the file with wrong permissions in the time between getting the name and creating the
file.) You still have to open the file to use it and to remove it (even if you do not use it).
When possible, you may prefer to use io.tmpfile, which automatically removes the file when the program
ends.

Logic Machine basic functions

toboolean (value)

Converts given value to boolean using following rules: nil, false, 0, empty string, '0' string are treated as
false, everything else as true.

sleep (delay)

Delays script execution by delay seconds

alert (fmt, ...)

Adds a message to Alert database. This function behaves exactly as string.format.

log (...)

Logs any number of variables in human-readable format.

Bit operators

bit.bnot (value)

Binary not

bit.band (x1 [, x2...])

Binary and between any number of variables

bit.bor (x1 [, x2...])

Binary and between any number of variables

bit.bxor (x1 [, x2...])

Binary and between any number of variables

bit.lshift (value, shift)

Left binary shift

bit.rshift (value, shift)

Right binary shift

Conversion
Compatibility layer: lmcore is an alias of cnv.

cnv.strtohex (str)

Converts given binary string to a hex-encoded string.

cnv.hextostr (hex [, keepnulls])

Converts given hex-encoded string to a binary string. NULL characters are ignored by default, but can be
included by setting second parameter to true.

cnv.tonumber (value)

Converts given value to a number using following rules: true is 1, false is 0, numbers and numeric strings
are treated as is, everything else is nil.

Data type functions
Compatibility layer: knxdatatype is an alias of dpt.

dpt.decode(value, datatype)

Converts hex-encoded value to Lua variable according to datatype passed.

Data types

1. 1 bit (boolean) - dt.bool — boolean
2. 2 bit (1 bit controlled) - dt.bit2 — number
3. 4 bit (3 bit controlled) - dt.bit4 — number
4. 1 byte ASCII character - dt.char — string
5. 1 byte unsigned integer - dt.uint8 — number

• 1 byte scaling - dt.scale — number
6. 1 byte signed integer - dt.int8 — number
7. 2 byte unsigned integer - dt.uint16 — number
8. 2 byte signed integer - dt.int16 — number
9. 2 byte floating point - dt.float16 — number
10. 3 byte time / day - dt.time — table with the following items:

• day — number (0-7)

• hour — number (0-23)

• minute — number (0-59)

• second — number (0-59)
11. 11. 3 byte date - dt.date — table with the following items:

• day — number (1-31)

• month — number (1-12)

• year — number (1990-2089)
12. 4 byte unsigned integer - dt.uint32 — number
13. 4 byte signed integer - dt.int32 — number
14. 4 byte floating point - dt.float32 — number
15. 4 byte access control - dt.access — number, currently not fully supported
16. 14 byte ASCII string - dt.string — string, null characters ('\0') are discarded during decoding

Bus object access

grp provides simplified access to the objects stored in the database and group address request helpers.
Most functions use alias parameter — object group address or unique object name. (e.g. '1/1/1' or 'My
object')

grp.getvalue ()

Returns value for given alias or nil when object cannot be found.

grp.find (alias)

Returns single object with the for the given alias. Object value will be decoded automatically only if the data
type has been specified in the 'Objects' module.
Returns nil when object cannot be found, otherwise it returns table with the following items:

• address — object group address

• updatetime — latest update time in UNIX timestamp format. Use os.date() to convert to readable
date formats

 When object data type has been specified in the 'Objects' module the following fields are available:

• name — unique object name

• datatype — object data type as specified by user

• decoded — set to true when decoded value is available

• value — decoded object value

grp.tag (tags [, mode])

Returns table containing objects with given tag. Tags parameter can be either table or a string. Mode
parameter can be either 'all' (return objects that have all of the given tags) or 'any' (default — returns
objects that have any of the given tags). You can use object functions on the returned table.

grp.alias ()

Converts group address to object name or name to address. Returns nil when object cannot be found.

grp.write (alias, value [, datatype])

Sends group write request to the given alias. Data type is taken from the database if not specified as third
parameter. Returns boolean as the result.

grp.response (alias, value [, datatype])

Similar to grp.write. Sends group response request to the given alias.

grp.read (alias)

Sends group read request to the given alias. Note: this function returns immediately and cannot be used to
return the result of read request. Use event-based script instead.

grp.update (alias, value [, datatype])

Similar to grp.write, but does not send new value to the bus. Useful for objects that are used only in
visualization.

Objects received by using grp.find (alias) or grp.tag (tags, mode) have the following functions.

Note: Always check that the returned object was found otherwise calling these functions will result in an
error. See the example below.

object:write (value, datatype)

Sends group write request to object's group address. Data type is taken from the database if not specified as
second parameter. Returns boolean as the result.

object:response (value [, datatype])

Similar to object:write. Sends group response request to object's group address.

object:read ()

Sends group read request to object's group address. Note: this function returns immediately and cannot be
used to return the result of read request. Use event-based script instead.

object:update (value [, datatype])

Similar to object:write, but does not send new value to the bus. Useful for objects that are used only in
visualization.

Time functions

os.microtime ()

Returns two values: current timestamp in seconds and timestamp fraction in nanoseconds

os.udifftime (sec, usec)

Returns time difference as floating point value between now and timestamp components passed to this
function (seconds, nanoseconds)

os.sleep (delay)

Delays script execution by delay seconds.

Script data storage

Storage object provides persistent key-value data storage for user scripts. Only the following Lua data types
are supported:

• boolean
• number
• string
• table

storage.set (key, value)

Sets new value for the given key. Old value is overwritten. Returns boolean as the result and an optional
error string.

storage.get (key [, default])

Gets value for the given key or returns default value (nil if not specified) if key is not found in the data
storage.

Data serialization

serialize.encode (value)

Generates a storable representation of a value.

serialize.decode (value)

Creates a Lua value from a stored representation.

String functions

string.trim (str)

Trims the leading and trailing spaces off a given string.

string.split (str, sep)

Splits string by given separator string. Returns Lua table.

Input and output functions

io.exists (path)

Checks if given path (file or directory) exists. Return boolean.

io.readfile (file)

Reads whole file at once. Return file contents as a string on success or nil on error.

io.writefile (file, data)

Writes given data to a file. Data can be either a value convertible to string or a table of such values. When
data is a table then each table item is terminated by a new line character. Return boolean as write result
when file can be open for writing or nil when file cannot be accessed.

JSON library

Note: json is not loaded by default, use require('json') before calling any functions from this library.

json.encode (value)

Converts Lua variable to JSON string. Script execution is stopped in case of an error.

json.pencode (value)

Converts Lua variable to JSON string in protected mode, returns nil on error.

json.decode (value)

Converts JSON string to Lua variable. Script execution is stopped in case of an error.

json.pdecode (value)

Converts JSON string to Lua variable in protected mode, returns nil on error.

